ITERATIVE METHODS FOR SCALABLE UNCERTAINTY QUANTIFICATION IN COMPLEX NETWORKS

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Iterative Methods for Scalable Uncertainty Quantification in Complex Networks

In this paper we address the problem of uncertainty management for robust design, and verification of large dynamic networks whose performance is affected by an equally large number of uncertain parameters. Many such networks (e.g. power, thermal and communication networks) are often composed of weakly interacting subnetworks. We propose intrusive and non-intrusive iterative schemes that exploi...

متن کامل

Developing the Next Generation Scalable Exascale Uncertainty Quantification Methods

Predictive modeling of multiscale and multiphysics systems requires accurate data-driven characterization of the input uncertainties and understanding how they propagate across scales and alter the final solution. We will address three major current limitations in modeling stochastic systems: (1) Most of current uncertainty quantification methods cannot detect and handle discontinuity in the pa...

متن کامل

Scalable Information Inequalities for Uncertainty Quantification

In this paper we demonstrate the only available scalable information bounds for quantities of interest of high dimensional probabilistic models. Scalability of inequalities allows us to (a) obtain uncertainty quantification bounds for quantities of interest in the large degree of freedom limit and/or at long time regimes; (b) assess the impact of large model perturbations as in nonlinear respon...

متن کامل

Uncertainty quantification for quantum chemical models of complex reaction networks.

For the quantitative understanding of complex chemical reaction mechanisms, it is, in general, necessary to accurately determine the corresponding free energy surface and to solve the resulting continuous-time reaction rate equations for a continuous state space. For a general (complex) reaction network, it is computationally hard to fulfill these two requirements. However, it is possible to ap...

متن کامل

Reduced order methods for uncertainty quantification problems

This work provides a review on reduced order methods in solving uncertainty quantification problems. A quick introduction of the reduced order methods, including proper orthogonal decomposition and greedy reduced basis methods, are presented along with the essential components of general greedy algorithm, a posteriori error estimation and Offline-Online decomposition. More advanced reduced orde...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal for Uncertainty Quantification

سال: 2012

ISSN: 2152-5080

DOI: 10.1615/int.j.uncertaintyquantification.2012004138